Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

نویسندگان

  • Oktay Yildirim
  • Tian Gang
  • Sachin Kinge
  • David N. Reinhoudt
  • Dave H.A. Blank
  • Wilfred G. van der Wiel
  • Guus Rijnders
  • Jurriaan Huskens
چکیده

FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs onto the surface. The Al(2)O(3) substrates were functionalized with aminobutylphosphonic acid (ABP) or phosphonoundecanoic acid (PNDA) SAMs or with poly(ethyleneimine) (PEI) as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al(2)O(3), which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al(2)O(3) surface and controlling the immersion time of the modified Al(2)O(3) substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N(2)/4%H(2)) led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patterning of L10 FePt nanoparticles with ultra-high coercivity for bit-patterned media.

L10-ordered FePt nanoparticles (NPs) with ultra-high coercivity were directly prepared from a new metallopolyyne using a one-step pyrolysis method. The chemical ordering, morphology and magnetic properties of the as-synthesized FePt NPs have been studied. Magnetic measurements show the coercivity of these FePt NPs is as high as 3.6 T. Comparison of NPs synthesized under the Ar and Ar/H2 atmosph...

متن کامل

One-step synthesis of FePt nanoparticles with tunable size.

A one-step synthesis of FePt nanoparticles is reported. The size, composition, and shape of the particles are controlled by varying the synthetic parameters such as molar ratio of stabilizers to metal precursor, addition sequence of the stabilizers and metal precursors, heating rate, heating temperature, and heating duration. An assembly of large (6 nm or greater) FePt nanoparticles, especially...

متن کامل

Reduction of Sintering during Annealing of FePt Nanoparticles Coated with Iron Oxide

FePt/iron oxide core/shell nanoparticles are synthesized by a two step polyol process with 1,2hexadecanediol as the reducing reagent. Monodispersed 2.6-nm FePt nanoparticles are first obtained by reduction of iron(III) acetylacetonate and platinum(II) acetylacetonate. These preformed FePt nanoparticles are then used as seeds and an iron oxide shell is formed in the second synthesis step. The ro...

متن کامل

Synergistic effects of Radiofrequency Hyperthermia temperature rate with magnetic Graphene oxide nanoparticles drug targeting on CT26 colon cancer cell line

Introduction: Graphene oxide (GO) sheets are carbon-networking nanomaterials offering excellent potential for drug delivery platforms due to hydrophobic interactions and high drug-loading efficiency. Superparamagnetic iron oxide nanoparticles can be used in certain applications such as cell labeling, drug delivery, targeting, magnetic resonance imaging and hyperthermia. Due t...

متن کامل

Silica encapsulation and magnetic properties of FePt nanoparticles.

Core-shell nanoparticles have emerged as an important class of functional nanostructures with potential applications in many diverse fields, especially in health sciences. We have used a modified aqueous sol-gel route for the synthesis of size-selective FePt@SiO2 core-shell nanoparticles. In this approach, oleic acid and olyel amine stabilized FePt nanoparticles are first encapsulated through a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2010